Isoperimetry and functional inequalities

نویسندگان

  • Piotr Nayar
  • Tomasz Tkocz
چکیده

1.1 Brunn-Minkowski inequality 1.1 Theorem. (Brunn-Minkowski, ’88) If A and B are non-empty compact sets then for all λ ∈ [0, 1] we have vol ((1− λ)A+ λB) ≥ (1− λ)(volA) + λ(volB). (B-M) Note that if either A = ∅ orB = ∅, this inequality does not hold since (1−λ)A+λB = ∅. We can use the homogenity of volume to rewrite Brunn-Minkowski inequality in the form vol (A+B) ≥ (volA) + (volB). (1.1) We can deduce from this inequality the isoperimetric inequality. 1.2 Theorem. Among sets with prescribed volume, the Euclidean balls are the one with minimum surface area. Proof. We can assume that C is compact and volC = volB 2 . We have

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-sobolev, Isoperimetry and Transport Inequalities on Graphs

In this paper, we study some functional inequalities (such as Poincaré inequalities, logarithmic Sobolev inequalities, generalized Cheeger isoperimetric inequalities, transportation-information inequalities and transportation-entropy inequalities) for reversible nearest-neighbor Markov processes on a connected finite graph by means of (random) path method. We provide estimates of the involved c...

متن کامل

Isoperimetry and Symmetrization for Logarithmic Sobolev Inequalities

Using isoperimetry and symmetrization we provide a unified framework to study the classical and logarithmic Sobolev inequalities. In particular, we obtain new Gaussian symmetrization inequalities and connect them with logarithmic Sobolev inequalities. Our methods are very general and can be easily adapted to more general contexts.

متن کامل

Logarithmic Sobolev, Isoperimetry and Transport Inequalities on Graphs

In this paper, we study some functional inequalities (such as Poincaré inequality, logarithmic Sobolev inequality, generalized Cheeger isoperimetric inequality, transportation-information inequality and transportation-entropy inequality) for reversible nearest-neighbor Markov processes on connected finite graphs by means of (random) path method. We provide estimates of the involved constants.

متن کامل

The Brunn–Minkowski theorem and related geometric and functional inequalities

The Brunn–Minkowski inequality gives a lower bound of the Lebesgue measure of a sum-set in terms of the measures of the individual sets. It has played a crucial role in the theory of convex bodies. This topic has many interactions with isoperimetry or functional analysis. Our aim here is to report some recent aspects of these interactions involving optimal mass transport or the Heat equation. A...

متن کامل

Isoperimetry and heat kernel decay on percolation clusters

Short title: Isoperimetry on percolation clusters. Abstract: we prove that the heat kernel on the infinite Bernoulli percolation cluster in Z almost surely decays faster than t−d/2. We also derive estimates on the mixing time for the random walk confined to a finite box. Our approach is based on local isoperimetric inequalities. Some of the results of this paper were previously announced in the...

متن کامل

Large deviations and isoperimetry over convex probability measures with heavy tails ∗ Sergey

Large deviations and isoperimetric inequalities are considered for probability distributions, satisfying convexity conditions of the Brunn-Minkowski-type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012